Positive Darwinian selection at the pantophysin (Pan I) locus in marine gadid fishes.

نویسندگان

  • Grant H Pogson
  • Kathryn A Mesa
چکیده

Maximum-likelihood models of codon substitution were used to test for positive Darwinian selection at the vesicle protein pantophysin in two allelic lineages segregating in the Atlantic cod Gadus morhua and in 18 related species of marine gadid fishes. Positive selection was detected in the two intravesicular loops of the integral membrane protein but not in four membrane-spanning regions or the 3' cytoplasmic tail. The proportion of positively selected sites (24.9%) and the mean nonsynonymous/synonymous rate ratio (omega = d(N)/d(S) = 5.35) were both greater in the first intravesicular (IV1) domain compared with the second intravesicular (IV2) domain (11.0% positively selected sites with mean omega = 3.76). Likelihood ratio tests comparing models that assume identical omega ratios along all branches of the phylogeny to those that allow omega ratios to vary among lineages were not significant for either the IV1 or IV2 domains, indicating that the selective pressures favoring amino acid replacements have operated consistently in both regions during the diversification of the group. Positive selection was observed in the IV1 domain in both G. morhua allelic lineages, and, although three of the four codons that differ between alleles were targets of positive selection in the broader group, no similar polymorphisms were detected in other taxa. The two G. morhua Pan I alleles appeared to have evolved before the speciation event separating it from its sister taxon, Theragra chalcogramma, and on the basis of a standard mtDNA clock are estimated to be at least 2 Myr old. Although the function of pantophysin remains unknown, the strong signal of positive selection at specific sites in the IV1 and IV2 domains may help clarify its role in cellular trafficking pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for positive selection at the pantophysin (Pan I) locus in walleye pollock, Theragra chalcogramma.

Nucleotide polymorphism at the pantophysin (Pan I) locus in walleye pollock, Theragra chalcogramma, was examined using DNA sequence data. Two distinct allelic lineages were detected in pollock, resulting from three amino acid replacement mutations in the first intravesicular domain of the protein. The common Pan I allelic group, comprising 94% of the samples, was less polymorphic (pi = 0.005) t...

متن کامل

Nucleotide polymorphism and natural selection at the pantophysin (Pan I) locus in the Atlantic cod, Gadus morhua (L.).

Molecular studies of nucleotide sequence variation have rarely attempted to test hypotheses related to geographically varying patterns of natural selection. The present study tested the role of spatially varying selection in producing significant linkage disequilibrium and large differences in the frequencies of two common alleles at the pantophysin (Pan I) locus among five populations of the A...

متن کامل

Ancient and continuing Darwinian selection on insulin-like growth factor II in placental fishes.

Despite abundant examples of both adaptation at the level of phenotype and Darwinian selection at the level of genes, correlations between these two processes are notoriously difficult to identify. Positive Darwinian selection on genes is most easily discerned in cases of genetic conflict, when antagonistic evolutionary processes such as a Red Queen race drive the rate of nonsynonymous substitu...

متن کامل

Historical changes in genotypic frequencies at the Pantophysin locus in Atlantic cod (Gadus morhua) in Icelandic waters: evidence of fisheries-induced selection?

The intense fishing mortality imposed on Atlantic cod in Icelandic waters during recent decades has resulted in marked changes in stock abundance, as well as in age and size composition. Using a molecular marker known to be under selection (Pan I) along with a suite of six neutral microsatellite loci, we analysed an archived data set and revealed evidence of distinct temporal changes in the fre...

متن کامل

Intense Habitat-Specific Fisheries-Induced Selection at the Molecular Pan I Locus Predicts Imminent Collapse of a Major Cod Fishery

Predation is a powerful agent in the ecology and evolution of predator and prey. Prey may select multiple habitats whereby different genotypes prefer different habitats. If the predator is also habitat-specific the prey may evolve different habitat occupancy. Drastic changes can occur in the relation of the predator to the evolved prey. Fisheries exert powerful predation and can be a potent evo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2004